Casuarina equisetifolia

System: Terrestrial

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantae</td>
<td>Magnoliophyta</td>
<td>Magnoliopsida</td>
<td>Casuarinales</td>
<td>Casuarinaceae</td>
</tr>
</tbody>
</table>

Common name
- arbol de hierro (Spanish, Galapagos), Australian beefwood (English), agoho (English, Philippines), pino australiano (English, Puerto Rico), nokonoko (English, Fiji), beef wood-tree (English), beach she-oak (English), whistling-pine (English), fila (French), casuarina (English), pin d’Australie (French), coast she-oak (English), Eisenholz (German), Strandkasuarine (German), ironwood (English), bois de fer (French), horsetailtree (English), Australian-pine (English), pinheiro-da-Austrália (Portuguese)

Synonym
- Casuarina littorea, L. var. littorea
- Casuarina littorea, L. ex Fosberg & Sachet
- Casuarina littorea, Rumpheus ex Stickman

Similar species
- Casuarina glauca, Casuarina cunninghamiana

Summary
Casuarina equisetifolia is an evergreen conifer-like angiosperm. It has been introduced to new locations for coastal landscaping and erosion control. It has become invasive in Florida (USA) where it interferes with prime reptile nesting sites. Casuarina aggressively colonizes sandy beaches where it forms monocultures and degrades habitat in the Cayman Islands.

view this species on IUCN Red List
Species Description

Casuarina equisetifolia is a member of the Casuarinaceae (beefwood) family; it is an evergreen tree with a soft wispy pine-like appearance and an open irregular crown (FEPPC Undated). The tree can attain heights of up to 50 meters, with a diameter of up to 18 centimetres; however, it generally only reaches 15 to 25 meters in height (NRC US Advisory Committee on Technology Innovation 1980). It bears a resemblance to coniferous plants due to the production of cone-like fruits and pine-needle-like leaves.

It has reddish brown to grey bark; the bark is rough, brittle, peeling. Branchlets are pine-needle like, greyish green, jointed, thin (less than 1 millimetre wide), 10 to 20 centimetres (four to eight inches) long, minutely ridged, hairy in furrows. Leaves are reduced to tiny scales, six to eight in whorls (this is a distinguishing feature, see Similar Species), whorls encircle joints of branchlets. Flowers are unisexual/monoecious, inconspicuous, female in small axillary clusters, male in small terminal spikes. Fruit is a tiny, one-seeded, winged nutlet (samara), formed in woody cone-like clusters (fruiting heads), these clusters are brown, two-centimetre-long (3/4 inch) and 1.3 centimetre-wide (1/2 inch) (Description from FEPPC Undated).

Notes

Casuarina cunninghamiana Miq. (River sheoak), *C. equisetifolia* L. (Australian pine) and *C. glauca* Seiber (gray sheoak) hybridise with each other (Morton 1980, in Snyder 1992; all three pose a threat to the environment and are considered invasive in the USA (Flores 2008).

There are two subspecies: *C. equisetifolia* var. *equisetifolia* and *C. equisetifolia* var. *incana* Benth; they differ in height and stem straightness, the latter has a smaller and poorer stem form and a more open canopy; many morphological features are variable (Binggeli 1997).

Lifecycle Stages

Young seedlings are sensitive to drought, flood and fire. Growth is most rapid during the first 7 years. The minimum seed-bearing age is 4 to 5 years. Maximum growth is reached in 20 years with a maximum life span of 40 to 50 years (Elfers 1988, in Snyder 1992). In Florida, growth rates have ranged from 0.5 to 1.5 metres per year under stressed conditions and over 3 metres per year under cultivation.

Uses

Casuarina is widely planted for coastal reclamation, erosion control, tannin, pulp, timber and fuel, the latter particularly in third world countries (Duke 1983; Elfers 1988). *Casuarina* was once used in the USA for reclaiming eroded areas, but many land managers condemn its use because it threatens indigenous plants and animals (Little & Skomen 1989, in Snyder 1992). Some African and Asian countries use it to combat desertification (Vietmeyer 1986, in Snyder 1992). The wood is used for beams, boat building, electric poles, fences, furniture, mine props, oars, pavings, pilings, roofing shingles, tool handles, wagon wheels and yokes (Elfers 1988, Little & Skomen 1989, in Snyder 1992). Hill tribes of New Guinea use *Casuarina* in rotation to restore nitrogen to the soil. The leaves have been employed in preparing active carbon by the zinc chloride method. Minor uses include wood ash for making soap and the extraction of dye from its bark (Elfers 1988). *Casuarina* species have medicinal value; the astringent bark extract may be used as a remedy for diarrhea and dysentery and to help relieve a sore throat.
Habitat Description

Casuarina equisetifolia occurs in open coastal strand habitats in subtropical and tropical climates, including: sandy and shelly beaches, rocky coasts, sand dunes, sand bars and estuarine/mangrove habitats (NRC US Advisory Committee on Technology Innovation 1980; Swearingen 1997; DaCosta-Cottam *et al.* 2009). Its natural habitat has been described as coastal herbaceous swamp and broad-leaved hammock communities (Binggeli 1997), however, *C. equisetifolia* frequently colonises disturbed sites such as filled wetlands, roadsides and cleared land (Elfers 1988).

This rapid-growing species will establish in habitats as varied as coastal sand dunes, high mountain slopes, the humid tropics and semiarid regions; it tends to be salt tolerant, wind resistant and adaptable to moderately poor solids; although it is not a legume it does have the ability to form root nodules with microbial associations and fix atmospheric nitrogen (NRC US Advisory Committee on Technology Innovation 1980; Little & Skomen 1989, in Snyder 1992). The monthly mean maximum temperature in the native area of *Casuarina* is 10°C to 33°C and it is reported to prefer annual temperatures of 22°C to 27°C; it is not frost-hardy (NRC US Advisory Committee on Technology Innovation 1980; Duke 1983; Snyder 1992). This lowland species grows from sea level up to 1 500 meters; in its natural habitat rainfall is from 700 to 2 000 millimetres, often with a dry season of six to eight months; however, it is reported to tolerate an annual precipitation of 640 to 4 300 millimetres (NRC US Advisory Committee on Technology Innovation 1980; Duke 1983).

This species tolerates calcareous (limestone-derived) and slightly saline soils with a pH of between 5.0 and 7.7 but it grows poorly on heavy soils such as clays; it can withstand partial water-logging for a time (NRC US Advisory Committee on Technology Innovation 1980; Duke 1983). It is reported to prefer coarse-textured soils (Rockwood *et al* undated) and is very tolerant of saline conditions and salt spray (Elfers 1988).

Reproduction

Casuarina equisetifolia produces thousands of wind-dispersed winged seeds per plant and resprouts profusely following coppicing (Elfers 1988). A single four or five year-old tree can produce thousands of seeds (Elfers 1988). Seeds in the seed bank can remain fertile for a few months to a year and germinate under conditions of adequate moisture and porous soil in four to eight days (Snyder 1992). *C. equisetifolia* flowers and fruits year-round in warm climates (Elfers 1988, in Snyder 1992). In the USA *C. equisetifolia* usually flowers and fruits twice a year: between February and April, and September and October, producing fruit in June and December. In Hawaii and Puerto Rico flowering and fruitching times are irregular (Binggeli 1997).

Nutrition

Casuarina equisetifolia can tolerate low soil fertility but is quite responsive to fertilisation with phosphorus or nitrogen and phosphorus (Rockwood *et al.* UNDATED).
General Impacts

Casuarina equisetifolia is a fast-growing plant which produces heavy shade and a thick blanket of leaves and fruits beneath it, reducing habitat value (Florida DEP Undated). Its dense monoculture thickets displace native dune and beach plant species. Once established, _C. equisetifolia_ alters light, temperature, soil chemistry and hydrology of the habitats it invades.

Habitat alteration: The thick layer of leaves produced by _C. equisetifolia_ has a reduced food value for native wildlife and destroys habitat for native insects and other wildlife (Klukas 1969, in Snyder 1992).

Reduction in native biodiversity: _C. equisetifolia_ forests provide little or no native wildlife habitat. In the Everglades, where _C. equisetifolia_ has invaded south Florida’s hammock and tree island communities, Mazzotti Ostrenko and Smith (1981) studied the effects of _Melaleuca quinquenervia_ and _C. equisetifolia_ on three native rodents (_Peromyscus gossypinus_, _Sigmodon hispidus_ and _Oryzomys palustris_). The authors found that _Casuarina_ habitats supported fewer rodents than either cocoplum or _Melaleuca_ habitats.

Threat to endangered species: _C. equisetifolia_ displaces native beach vegetation that provide critical wildlife habitat for threatened and endangered plant and animal species. _C. equisetifolia_ forms dense stands and destroys reptile breeding sites in the Everglades National Park. Its presence threatens the only remaining nesting areas in the USA of the ‘Vulnerable (VU)’ American crocodile (_Crocodylus acutus_) and one of the remaining most productive nesting areas of the ‘Endangered (EN)’ loggerhead turtle (_Caretta caretta ssp. caretta_) and the ‘Endangered (EN)’ green turtle (_Chelonia mydas_). The nest sites of these species are threatened as the invasive plant takes over beach dune habitat and baby sea turtles become trapped in its roots as they emerge from their nests (Florida DEP Undated). Areas inhabited by the ‘Vulnerable (VU)’ gopher tortoise (_Gopherus polyphemus_) are also threatened with invasion by _Casuarina_ (Mazzotti Ostrenko and Smith 1981).

Modification of hydrology: _C. equisetifolia_ can exhaust the moisture in the soil and lower the water table of the area (NRC US Advisory Committee on Technology Innovation 1980) it invades.

Physical disturbance: _C. equisetifolia_ can facilitate beach erosion by displacing deep-rooted vegetation (Florida DEP Undated). Unlike native vegetation _C. equisetifolia_ has a shallow root system and tends to uproot and topple during high winds, posing a significant hazard to coastal storm evacuation routes (Florida DEP Undated). Its dense roots can also break water-lines and sewer-lines (Snyder 1992).

Inhibits the growth of other species: _C. equisetifolia_ produces allelopathic compounds that inhibit growth of other plants (Morton 1980, in Florida DEP Undated).

Modification of successional patterns: _C. equisetifolia_ can be a primary or secondary coloniser in disturbed areas in Florida, USA (Elfers 1988, Klukas 1969, in Snyder 1992).

Human health: The genus _Casuarina_ poses a problem to humans as its pollen is a source of respiratory irritation and allergies (Elfers 1988; Binggeli 1997).
Management Info

Preventative measures: A Risk Assessment of *C. equisetifolia* for Hawaii and other Pacific islands was prepared in 2008. The result is a score of 21 placing it in the High Risk category and concluding that it is “likely to cause significant ecological or economic harm in Hawaii and on other Pacific Islands!”

Physical: For small infestations the manual removal of seedlings and saplings is recommended (Swearingen 1997); however, it should be noted that cutting often induces sprouting (Snyder 1992). Prescribed fire has been used for large infestations in fire-tolerant vegetation communities. Fire control is reported to be effective in dense stands with sufficient dry fuel on the ground. Periodic fires coupled with the use of herbicides may be an effective method of controlling *Casuarina* (Snyder 1992). However, too frequent intense fires that kill over story native pines may actually encourage *Casuarina* species to establish (Wade Ewel & Hofstetter 1980, in Snyder 1992).

Burning *Casuarina* in peat soils may be hazardous (Morton 1980, in Snyder 1992). Fire may be an effective control method for trees greater than eight centimetres (three inches) in diameter and in dense stands; burning could be potentially harmful if the soil pH is changed such that native species cannot establish (Elfers 1988, in Snyder 1992).

Chemical: For heavier infestations application of a systemic herbicide to bark, cut stumps or foliage is likely to be most effective. Chemicals such as 2,4,5-T, 2,4-D or Garlon 3A can be used to tackle *Casuarina* (Klukas 1969, Morton 1980, in Snyder 1992). A 2% mixture of Garlon 4 in diesel oil applied using the basal bark method or the hack-and-squirt method is most commonly used against *Casuarina* in the USA (US Exotic Pest Plant Council Undated). Garlon 3A is also effective.

Biological: USDA Agricultural Research Service (ARS) scientists have been searching in Australia’s outback and coastlines for insects that could be key bio-controls for *C. equisetifolia* (Flores 2008). From 300 species, including wasps, weevils, stem-borers, sap-suckers and seed-eaters about 12 candidates have been identified. Not only do these agents attack *C. equisetifolia* but many also attack the related invasives *C. glauca* and *C. cunninghamiana*. The most promising bio-control agents include the seed-feeding wasp (*Bootanelellus orientalis*), which is host-specific to Australian pine, and the defoliator moth (*Zauclophora pelodes*). These insects are still undergoing testing to determine their suitability for use as bio-control agents in the United States. Please follow this link to read more about this research in the September 2008 issue of Agricultural Research magazine.

Many pathogens threaten plantations of *Casuarina* in many parts of the world. In India a stem borer kills shoots and seedling damping-off by *Rhizoctonia* spp. occurs in nurseries (Binggeli 1997). Nursery seedlings in India are attacked by various insect species. In China the lymantrid moth (*Lymantria xyilina*) is described as one of the worst pests of *C. equisetifolia* (Elfers 1988). In Florida, USA, there has been a high rate of root rot caused by the fungus *Clitocybe tabescens*. In Puerto Rico stem canker and dieback attributable to the fungus *Diplodia natalensis* have been recorded on *C. equisetifolia*. In Puerto Rico natural regeneration is rare because ants eat nearly all the seeds (Binggeli 1997). Ants have also reportedly been a major source of control in India.

Integrated Pest Management: Recently disturbed beach habitat may be planted with native vegetation to prevent *C. equisetifolia* from invading.
Pathway
Seven Australian and one East Indian species of the genus *Casuarina* were introduced into the United States before 1924, beginning with seeds brought from France in 1898 by the U.S. Dept. of Agriculture explorer, Dr. W. T. Swingle. Some seeds were distributed under erroneous names and problems of misidentification have continued since (Elfers 1988). *C. equisetifolia* was introduced into Florida in the late 1800s, planted widely for the ditch and canal stabilization, shade and timber (Swearingen 1997).

Pacific Islands Ecosystems at Risk, (PIER), 2010 *Casuarina equisetifolia* L.,

Compiler: National Biological Information Infrastructure (NBII) & IUCN/SSC Invasive Species Specialist Group (ISSG)
Updates under progress with support from the Overseas Territories Environmental Programme (OTEP) project XOT603, a joint project with the Cayman Islands Government - Department of Environment

Review: Kenneth Langeland Professor, Extension Specialist, Agronomy. Center for Aquatic and Invasive Plants. Florida USA.

Publication date: 2010-01-23

ALIEN RANGE

[1] ANGUILLA
[2] ATLANTIC - WESTERN CENTRAL
[1] BAHAMAS
[1] BES ISLANDS (BONAIRE, SINT EUSTATIUS AND SABA)
[4] CAYMAN ISLANDS
[1] CUBA
[1] DOMINICAN REPUBLIC
[1] FRENCH POLYNESIA
[1] GUATEMALA
[1] HAITI
[1] KIRIBATI
[1] MARTINIQUE
[1] MONTSERRAT
[1] NORTHERN MARIANA ISLANDS
[1] PALAU
[1] PUERTO RICO
[2] SAINT HELENA
[1] SAINT LUCIA

[1] ANTIGUA AND BARBUDA
[1] AUSTRALIA
[1] BERMUDA
[1] CAROLINE ISLANDS
[1] COOK ISLANDS
[1] DOMINICA
[1] ECUADOR
[1] GRENADA
[1] GUAM
[1] JAMAICA
[1] MARSHALL ISLANDS
[1] MEXICO
[1] NAURU
[1] PAKISTAN
[1] PITCAIRN
[1] REUNION
[1] SAINT KITTS AND NEVIS
[1] SAINT VINCENT AND THE GRENADINES
FULL ACCOUNT FOR: **Casuarina equisetifolia**

[1] SAMOA
[1] TONGA
[1] TRINIDAD AND TOBAGO
[3] UNITED STATES
[1] TURKS AND CAICOS ISLANDS
[1] UNITED STATES MINOR OUTLYING ISLANDS
[2] VIRGIN ISLANDS, BRITISH
[1] VIRGIN ISLANDS, U.S.

Red List assessed species 8: **CR = 5; EN = 1; VU = 2**;

- **Acacia anegadensis** **CR**
- **Chamaesyce deppeana** **CR**
- **Crocodylus acutus** **VU**
- **Juniperus bermudiana** **CR**
- **Caretta caretta** **EN**
- **Cordia rupicola** **CR**
- **Gopherus polyphemus** **VU**
- **Metastelma anegadense** **CR**

BIBLIOGRAPHY

38 references found for **Casuarina equisetifolia**

Management information

Summary: Short summary of description, synonyms, uses and reproductive biology.

Summary: A study on the use of a screening system to assess proposed plant introductions to Hawaii or other Pacific Islands and to identify high-risk species used in horticulture and forestry which would greatly reduce future pest plant problems and allow entry of most nonpests.

European and Mediterranean Plant Protection Organization (EPPO). 2006. Guidelines for the management of invasive alien plants or potentially invasive alien plants which are intended for import or have been intentionally imported. EPPO Bulletin 36 (3), 417-418.

Florida DEP (Florida Department of Environmental Protection) - Bureau of Invasive Plant Management. Undated. Weed Alert: Australian pine (Casuarina species).

Summary: Available from: http://www.flepcc.org/Weed_Alerts.htm [Accessed 11 November 2009]

IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4.

Summary: The IUCN Red List of Threatened Species provides taxonomic, conservation status and distribution information on taxa that have been globally evaluated using the IUCN Red List Categories and Criteria. This system is designed to determine the relative risk of extinction, and the main purpose of the IUCN Red List is to catalogue and highlight those taxa that are facing a higher risk of global extinction (i.e. those listed as Critically Endangered, Endangered and Vulnerable). The IUCN Red List also includes information on taxa that are categorized as Extinct or Extinct in the Wild; on taxa that cannot be evaluated because of insufficient information (i.e. are Data Deficient); and on taxa that are either close to meeting the threatened thresholds or that would be threatened were it not for an ongoing taxon-specific conservation programme (i.e. are Near Threatened).

Summary: This compilation of information sources can be sorted on keywords for example: Baits & Lures, Non Target Species, Eradication, Monitoring, Risk Assessment, Weeds, Herbicides etc. This compilation is at present in Excel format, this will be web-enabled as a searchable database shortly. This version of the database has been developed by the IUCN SSC ISSG as part of an Overseas Territories Environmental Programme funded project XOT603 in partnership with the Cayman Islands Government - Department of Environment. The compilation is a work under progress, the ISSG will manage, maintain and enhance the database with current and newly published information, reports, journal articles etc. Mack, R. N and W. M. Lonsdale, 2002. Eradicating invasive plants: Hard-won lessons for islands. In Turning the tide: the eradication of invasive species; 311-318. Veitch, C.R. and Clout, M.N.(eds). IUCN SSC Invasive Species Specialist Group, IUCN, Gland, Switzerland and Cambridge, UK.

PIER (Pacific Island Ecosystems at Risk), 2010. Casuarina equisetifolia

Summary: Ecology, synonyms, common names, distributions (Pacific as well as global), management and impact information. Available from: http://www.hear.org/pier/species/casuarina_equisetifolia.htm

Summary: An illustrated guide providing practical information for the effective control of the worst invasive plant species in Galapagos. Designed for farmers and other land managers, it describes manual and chemical control methods. It also includes 8 species that are potential problems for Galapagos. Language: Spanish.

Summary: This document comprises costed eradication plans for 21 invasive species in Galapagos. The plans were developed as part of a GEF funded project ECU/00/G31 ?Control of Invasive species in the Galapagos Archipelago?. The management plans report projects at different stages of development and for species that have invaded to different extents. Three of the projects have already been finished successfully, 5 have yet to be started, and for the rest the projects have been running for between 1 and 6 years. The cost and time needed for eradication varies considerably by species and demonstrates the importance of species eradication as soon as possible after detection.

Resumen

Summary: Detailed report on description, distribution, habitat, reproduction methods and management.

Global Invasive Species Database (GISD) 2021. Species profile **Casuarina equisetifolia**.
Summary: Text in Spanish.

Summary: A report on description, distribution, habitat, reproduction methods, and uses.

Summary: Available from: http://www.fs.fed.us/database/feis/ [Accessed 11 November 2009]
Summary: Report on description, distribution, habitat, reproduction methods, and uses.

Tassin, J., Rivière, J.N., Cazanove, M., Bruzzeses, E. 2006. Ranking of invasive woody plant species for management on Réunion Island. Weed research 46, 388-403
Summary: L’ensemble de 318 espèces de plantes ligneuses introduites sur la Réunion, permet d’identifier 132 comme naturalisées dans les écosystèmes naturels. 26 de ces espèces choisies parmi les plus envahissantes ont été classées en fonction de leur impact biologique sur les écosystèmes indigènes.

Summary: Available from: http://www.ars.usda.gov/is/AR/archive/sep08/pine0908.htm [Accessed 11 November 2009]
Summary: Information on common names, synonyms, and the distributional range of species.

Summary: The PLANTS Database provides standardized information about the vascular plants, mosses, liverworts, hornworts, and lichens of the U.S. and its territories. It includes names, plant symbols, checklists, distributional data, species abstracts, characteristics, images, plant links, references, crop information, and automated tools.

Available from: http://plants.usda.gov/cgi_bin/topics.cgi?earl=plant_profile.cgi&symbol=CAEQ