Pacifastacus leniusculus

System: Freshwater

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animalia</td>
<td>Arthropoda</td>
<td>Malacostraca</td>
<td>Decapoda</td>
<td>Astacidae</td>
</tr>
</tbody>
</table>

Common name

Pacific crayfish (English), Californian crayfish (English), signal crayfish (English)

Synonym

Astacus leniusculus, Dana, 1852
Potamobius leniusculus, Ortmann, 1902
Pacifastacus leniusculus, Bott, 1950

Similar species

Astacus astacus

Summary

Pacifastacus leniusculus is a large, hardy cool temperate freshwater crayfish that is found in rivers and lakes. It is endemic to northwestern USA and southwestern Canada, from where it was introduced into more southerly states, as well as into Europe and Japan. Pacifastacus leniusculus is an aggressive competitor and has been responsible for displacing indigenous crayfish species wherever it has been introduced. In addition, it acts as a vector for the crayfish plague fungus, *Aphanomyces astaci*, to which all non-North American crayfish are susceptible, but to which it is relatively immune. Pacifastacus leniusculus is a large, relatively fast-growing species with high fecundity. Consequently, it has proved a good aquacultural species and supports capture fisheries in the western USA and Europe, particularly in Finland and Sweden.

Species Description

The cephalothorax is smooth with two pairs of post-orbital ridges, the anterior pair with an apical spine; and no spines on shoulders of the carapace behind cervical groove; the areola between branchiocardiac grooves is obvious. The rostrum sides are smooth and more or less parallel until the apex; the acumen is very pointed with prominent shoulders; and a simple median carina down whole length. Its claws are robust and smooth on both surfaces, the underside is red in colour; with a single tubercle on the inner side of the fixed finger; and a white-turquoise patch on top of the junction of fixed and moveable fingers; adult males are massive either lengthways or in width. Males are up to 16cm in length from tip of rostrum to end of telson, females up to 12cm; much larger individuals have been recorded, i.e. 95mm carapace length. The weight is typically 60 and 110g at 50 and 70mm carapace length. Its colour bluish-brown to reddish-brown, occasionally light- to dark-brown (David Holdich., pers. comm., 2005).

view this species on IUCN Red List
Lifecycle Stages

Pacifastacus leniusculus has a typical life cycle of a member of the crayfish family Astacidae, and which is therefore very similar to that of indigenous European crayfish. The eggs hatch into miniature crayfish that stay with the mother for three stages, the third stage gradually becoming more and more independent of the mother. Juveniles undergo as many as 11 moults during their first year, but by age 3 this is reduced to two moults per year, and by age 4 onwards to one moult per year (Lewis, 2002).

Uses

Commercially harvested in the western USA, mainly in Washington and Oregon States, although a larger harvest is obtained from the introduced population in the Sacramento River (Lewis, 2002). It was originally hoped that stocking *P. leniusculus* into European waters would revive catches of crayfish to their pre-plague levels, particularly in Sweden and Finland (Skurdal et al. 1999); this has not proved to be the case. In Sweden the catch in 1996 was 265 tonnes (compared to 52 for *A. astacus*) and that cultured amounted to 42 tonnes (compared to 12 for *A. astacus*). The catch of *P. leniusculus* in Finland in 2001 was 22 tonnes (compared to 57.5 for *A. astacus*). However, the Finnish catch of *P. leniusculus* is increasing and is estimated to double every 1-2 years. In 2004 it exceeded 50% of the catch (Erkamo et al. 2004). *P. leniusculus* fetches approximately half the price as *A. astacus* in Finland and Sweden. The introduced species has done better in southern Sweden than in the north and in Finland, and this may be a consequence of the cool climatic conditions in the latter two regions (Henttonen & Huner, 1999). In Europe as a whole in 1994 a total of 355 tonnes of *P. leniusculus* originated from capture fisheries and 51 tonnes from culture. This represents only 9% of European capture fisheries and 32.5% of culture fisheries (Ackefors, 1998, 1999).

Habitat Description

Pacifastacus leniusculus occupies a wide range of habitats from small streams to large rivers (e.g. Columbia River) and natural lakes, including sub-alpine lakes, such as Lakes Tahoe and Donner (Lowery & Holdich, 1988; Lewis, 2002). However, it also grows well in culture ponds. It is tolerant of brackish water and high temperatures. It does not occur in waters with a pH lower than 6.0. *P. leniusculus* is very active and migrates up and down rivers, as well as moving overland around obstacles. However, their rate of colonisation is relatively slow and may only be about 1 km yr⁻¹. In one stream in England it took 17 years for them to spread 12 km downstream (Stanton, 2004). Their burrows can reach high densities, i.e.14 m⁻¹, and they can have a serious impact on bank morphology, causing them to collapse. It was considered to be a non-burrowing species, but in Europe in constructs burrows under rocks or in river and lake banks (Guan, 1994; Sibley, 2000).
Reproduction
The breeding cycle is typical of a cool temperate zone species, although *P. leniusculus* grows faster and reaches a greater size than its counterparts. Size at maturity is usually 6-9cm TL at an age of 2-3 years, although maturity can occur as early as 1 year. Mating and egg laying occurs during October in the vast majority of populations. Egg incubation time ranges from 166 to 280 days. In natural populations hatching occurs from late March to the end of July depending on latitude and temperature. Egg numbers usually range from 200 to 400, although some individuals of 66mm CL have been reported as having over 500 eggs. Based on the use of the lipofuschin technique it has been estimated that some individuals can live 16 years, and other estimates state that it may be as long as 20 years. Some individuals may grow to a large size, i.e. 95mm CL, but this may not represent a great age, but that of a fast-growing newly introduced population that encounters little competition. Estimates of survivorship to age 2 vary from 10-52%, being dependent on both abiotic and biotic factors. Competition and cannibalism can greatly affect survival in dense populations. Stebbing *et al.* (2003) demonstrated for the first time the presence of a sex pheromone, released during the breeding season by mature females, that stimulates courtship and mating behaviour in male *P. leniusculus*.

Nutrition
As an opportunistic polytrophic feeder, *P. leniusculus* will eat anything that is available, including other crayfish. The diet was found to shift from aquatic insects in juveniles, to more plant material in adults in some American populations (Lewis, 2002). However, Guan & Wiles (1997) found that cannibalism increased with size and that more animal than plant material was consumed by adults in a British river.
General Impacts

Pacifastacus leniusculus displays opportunistic polytrophic feeding habits, although more animal than plant material may be consumed if available. It can have a considerable impact on populations of macro-invertebrates, benthic fish, and aquatic plants (Guan & Wiles 1997; Nyström, 1999; Lewis, 2002), it also has been used to clear weed from ponds on fish farms. Griffiths et al. (2004) found that the presence of *P. leniusculus* significantly reduced the number of Atlantic salmon using shelters in artificial test arenas. Sooty crayfish (see *Pacifastacus nigrescens* in IUCN Red List of Threatened Species), a native to the western USA, has become extinct partly due to interspecific competition with *P. leniusculus*, which was introduced into its range. *P. leniusculus* has also been implicated in causing a reduction in the range of the already narrowly endemic shasta crayfish (see *Pacifastacus fortis* in IUCN Red List of Threatened Species) in the western America (Taylor, 2002).

P. leniusculus was introduced into Japan from Portland, Oregon five times during 1926 to 1930, where it has reduced the range of the indigenous *Cambaroides japonicus* on the island of Hokkaido (Hiruta, 1996; Kawai & Hiruta, 1999). It has also been found in some lakes on Honshu (Hiruta, S., 2005, pers. Comm.). In Europe, it has extirpated populations of the indigenous crayfish species, particularly the white-clawed crayfish (see *Austropotamobius pallipes* in IUCN Red List of Threatened Species) in England (Holdich, 1999; Hiley, 2003). However, in Finland it coexisted with the noble crayfish, (see *Astacus astacus* in IUCN Red List of Threatened Species), in a lake for 30 years, before reproductive interference led to the demise of the latter species (Westman et al. 2002). Its main impact has been as a vector of the crayfish plague fungus, *Aphanomyces astaci*, which has caused large-scale mortalities amongst indigenous European crayfish populations, particularly in England (Alderman, 1996). The disease has recently been confirmed in *P. leniusculus* from western Hungary, which could have serious implications for indigenous crayfish in the Danube catchment (Kiszely, 2004).

Management Info

There are no documented control agents for the successful management of *P. leniusculus* available at this time (Holdich et al. 1999). Trapping is size selective and the smaller individuals remaining take advantage of the lack of competition to grow rapidly (Sibley, 2000). Preventing the further introduction of this species into new bodies of water is one of the few options available. Educating the public to the environmental risks this species pose and identifying new populations are key elements to stopping the spread of this species where it is not wanted. Stebbing et al. (2003, 2004) have researched into the possibilities of using pheromones to attract male *P. leniusculus* into traps. Stringent legislation has been applied to *P. leniusculus* in Britain, which effectively makes it a ‘pest’ and bans the keeping of it in Scotland and Wales and much of England (Holdich et al. 2004). Despite this *P. leniusculus* continues to spread and may well cause the extinction of the single indigenous crayfish species within 30 years (Hiley, 2003; Sibley, 2003). Work is in progress in the UK to assess the use of natural pyrethrum again nuisance populations of *P. leniusculus* in enclosed waterbodies (Peay, 2005).

Pathway

P. leniusculus was first introduced into Japan from North America for use as food in 1928 (Kawai et al. 2002b).
GLOBAL INVASIVE SPECIES DATABASE

FULL ACCOUNT FOR: Pacifastacus leniusculus

Principal source:

Compiler: National Biological Information Infrastructure (NBII) & IUCN/SSC Invasive Species Specialist Group (ISSG)

Review: Dr D. M. Holdich, EMEC Ecology, England.\Dr M. P?ckl, Institute of Ecology and Conservation Biology, Department of Limnology, University of Vien Austria

Publication date: 2005-04-26

ALIEN RANGE

Red List assessed species 6: EX = 1; EN = 1; VU = 1; DD = 2; LC = 1;

Astacus astacus VU
Austropotamobius pallipes EN
Cambaroides japonicus DD

Astacus leptodactylus LC
Austropotamobius torrentium DD
Pacifastacus nigrescens EX

BIBLIOGRAPHY

53 references found for Pacifastacus leniusculus

Management information

Summary: Information on description, economic importance, distribution, habitat, history, growth, and impacts and management of species.

Summary: The electronic tool kits made available on the Cefas page for free download are Crown Copyright (2007-2008). As such, these are freeware and may be freely distributed provided this notice is retained. No warranty, expressed or implied, is made and users should satisfy themselves as to the applicability of the results in any given circumstance. Toolkits available include 1) FISK- Freshwater Fish Invasiveness Scoring Kit (English and Spanish language version); 2) MFISK- Marine Fish Invasiveness Scoring Kit; 3) MI-ISK- Marine invertebrate Invasiveness Scoring Kit; 4) FI-ISK- Freshwater Invertebrate Invasiveness Scoring Kit and AmphISK- Amphibian Invasiveness Scoring Kit. These tool kits were developed by Cefas, with new VisualBasic and computational programming by Lorenzo Vilizzi, David Cooper, Andy South and Gordon H. Copp, based on VisualBasic code in the original Weed Risk Assessment (WRA) tool kit of P.C. Pheloung, P.A. Williams & S.R. Halloy (1999).

The decision support tools are available from:
The guidance document is available from http://www.cefas.co.uk/media/118009/fisk_guide_v2.pdf [Accessed 13 January 2009].
FRS Freshwater Laboratory, UNDATED. Sinal signal crayfish - an unwelcome addition to Scottish streams.

Summary: This publication aims to first provide decision makers and managers with information on the existing international and regional regulations that address the use of alien species in aquaculture, either directly or indirectly; and three examples of national responses to this issue (New Zealand, Australia and Chile).

General information

This article includes historical information about the introduction of the native crayfish P. leniusculus in North America and Europe, with details of the distribution of introduced and native crayfish species in Europe, in Holdich, D. M. & Lowery, R. S. (Eds). Freshwater crayfish: biology, management and exploitation. Croom Helm, London: 283-308.

Summary: This chapter outlines and compares the possible effects of introduced and European native crayfish on macrophytes, algae, invertebrates, amphibians and fish.

Summary: This article includes historical information about the introduction of P. leniusculus into Japan. It mentions the impact of P. leniusculus on the native crayfish Cambaroides japonicus, which is considered to be endangered according to the Japanese Fisheries Agency (1998) and the Environment Agency (2000).

Summary: A comparison of temperature tolerance of P. leniusculus and C. japonicus.

Summary: A comparison of temperature tolerance of P. leniusculus and C. japonicus.

Summary: This article includes historical information about the introduction of P. leniusculus into Japan. It mentions the impact of P. leniusculus on the native crayfish Cambaroides japonicus, which is considered to be endangered according to the Japanese Fisheries Agency (1998) and the Environment Agency (2000).

Summary: This chapter outlines and compares the possible effects of introduced and European native crayfish on macrophytes, algae, invertebrates, amphibians and fish.