Sus scrofa

System: Terrestrial

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animalia</td>
<td>Chordata</td>
<td>Mammalia</td>
<td>Artiodactyla</td>
<td>Suidae</td>
</tr>
</tbody>
</table>

Common name

pig (English), Wildschwein (German), razorback (English), te poaka (Maori), kuhukuhu (Maori), poretere (Maori), petapeta (Maori), kune-kune (Maori, New Zealand)

Synonym

Similar species

Summary

Sus scrofa (feral pigs) are escaped or released domestic animals which have been introduced to many parts of the world. They damage crops, stock and property, and transmit many diseases such as Leptospirosis and Foot and Mouth disease. Rooting pigs dig up large areas of native vegetation and spread weeds, disrupting ecological processes such as succession and species composition. *Sus scrofa* are omnivorous and their diet can include juvenile land tortoises, sea turtles, sea birds, endemic reptiles and macro-invertebrates. Management of *Sus scrofa* is complicated by the fact that complete eradication is often not acceptable to communities that value feral pigs for hunting and food.

[view this species on IUCN Red List](http://iucngisd.org/gisd/species.php?sc=73)
Species Description
Pigs are large omnivorous mammals with powerful bodies and coarse hairy coats. Their thick
necks, wedge-shaped heads and mobile snouts are used in feeding to uproot the ground and find
prey or plant material. Feral pigs are easily distinguished from domestic pigs via a smaller leaner
and more muscular stature, shorter hind quarters, longer snouts and tusks. Older boars usually
develop a thick keratinous shield over their shoulders, which provides some protection during
fights with other boars. Feral pig hair is longer and coarser than a domestic pigs and sometimes
forms in a tuft along their back (hence, the name razorback). The tails of feral pigs are not curly as
in domestic pigs, they are instead long and straight with a bushy tip.
Ecological characteristics of feral pig activity, group size and home range size should be
considered in any management strategy aimed to control pig numbers or reduce their negative
impact. Feral pig activity varies between different habitats and climates. High activity has been
reported to occur in early morning and late afternoon in tropical climates (Diong 1982). However,
in India pigs have been reported to feed nocturnally to raid croplands (Sekhar 1998, in Wolf and
Conover 2003). On Santa Cruz Island (California) the milder weather of fall and late winter causes
pigs to be more active in the morning and evening, while the short cool and often rainy days of
winter causes midday activity. Pigs on the island were active at night mostly when conditions were
In terms of group structure, in North-western Australia mob sizes are generally about 12 or less,
although occasionally mobs of 30 pigs are seen. Adult boars are mostly solitary. In South
Carolina the average home range of boars is 226 hectares, while the average for sows is 181
hectares (Wood and Brenneman 1980, in Wolf and Conover 2003). Whereas in Australia average
home range can vary from 140 hectares for a boar in Namagdi National park, Australian capital
territory (McIlroy and Saillard 1989), to 430 hectares for a boar in Western New South Wale (Giles
1980).
Feral pigs are polyoestrous, adult sows have a 21 day oestrous cycle and a gestation period of
112-114 days (Choquenot et al.1996). Estimated litter size is 4.5-6.3 viable young per sow (Twigg
et al. 2005, Choquenot et al. 1996) but in good conditions 10 piglets can be born to one sow.
Lifecycle Stages
Pigs are normally social animals but adult boars over 18 months old are invariably solitary
(McIlroy 1990).
Uses
Captain Cook used the pig in trading with the natives as early as 1777. "A small pig of 10 or 12
pounds\" was traded for a spike but a "hog" was exchanged for a hatchet (Cook 1784, in Diong
1982).
In central Europe the false spruce webworm (Cephalcia abietis) causes defoliation of Norway
spruce trees; high densities of boars are able to cause high mortality to insect larvae by up to
70%, however they also cause damage to tree roots making the perceived benefit negligible
In many highland areas of New Guinea pigs are deliberately placed into gardens at the end of a
harvest sequence and prior to gardening to remove remaining sweet potato tubers and to assist in
turning and aerating the soil before replanting (Westermann 1968, Paglau 1982, Wood and
Habitat Description
The feral pig adapts to a variety of environments from Mediterranean oak woodland forests to the semi-arid rangelands of Eastern Australia, from the flood plains, billabongs and grassland savannas of tropical North-western Australia to the gray beech forests of the Smoky Mountains in America and from the wetland and lowland evergreen monsoon forests of Australia to the fresh water marshes and brackish water marshes of South Carolina (Wood and Brenneman 1980, in Wolf and Conover 2003). Wild pigs are rarely found over 1650m (Bulmer and Bulmer 1964, in Hide 2003), but are known to be found at altitudes as high as 3000m in New Guinea (Flannery 1995, in Hide 2003).

Home ranges of pigs are smaller during the dry season than during the wet season. During the dry season on Santa Catalina pigs preferred cool moist canyon bottoms due to a physiological need for free water. Dense vegetation was more actively sought after than open areas such as grasslands (Baber and Coblentz 1986, in Wolf and Conover 2003). The presence of crops in the near area (for example palm dates or oat hay cultivations) provide a food supplement and may greatly increase feral pig density; the close location of cereal crops in one study increased the density of feral pigs almost four-fold (Caley 1993, in Wolf and Conover 2003). Similarly the presence of adjacent palm cultivations in Malaysia was found to increase pigs density by 10 to 100 times (Ickes Paciorek and Thomas 2005). High densities of pigs may also be attributed to water availability. The recent expansion in feral pig distribution in Australia has been attributed to the increase in suitable habitats, in particular, an increase in water availability from farm dams and developing forest industries (Spencer and Hampton 2005).

Reproduction
Feral pigs are polyoestrus: adult females have a 21-day oestrus cycle and a gestation period of about 112-114 days. In New Zealand they probably breed throughout the year, though mainly in spring and summer (Wodzicki 1950; J. McIlroy unpublished). Their litter size is usually between 6 and 10 piglets, but usually only half this number survives. They reach breeding age at between 10 and 12 months (Wodzicki 1950).

In one study females were found to have about 5 young every 0.86 years with some females having two litters per year. In this study fertility continued to increase with age until it peaked at two to three years of age. 58% of piglets died before weaning (Baber and Coblentz 1986, in Wolf and Conover 2003).
Nutrition
Pigs lack the multiple stomachs found in ruminants such as cattle and goats. Feral pigs are omnivores with an opportunistic diet, including high-fibre (> 25%) low-protein grasses, legumes, herbs and roots. They readily feed on crops, fallen fruits, seeds and small animals (McIlroy 1990). Pigs regularly root the ground in search of roots, fungus, nuts, seeds and grubs (Frederick 1998, Sicuro 2002, in Wolf and Conover 2003). In their native Mediterranean woodland the wild boar compensates for the reduced supply of acorns in the spring by raiding underground hoards of acorns collected and buried by small mammals (the availability of acorns is critical to female boars as they need the extra nutrition for lactation) (Focardi Capizzi and Monetti 2000, in Wolf and Conover 2003).

Pigs adapt their diet to best utilise local resources. In the semi-arid rangelands of eastern Australia and in New Guinea feral pigs will regularly hunt and devour lambs (particularly twin lambs (which are weaker) (Choquenot, Lukins and Curran 1997, in Wolf and Conover 2003; Hide 2003). On Horn Island, Mississippi, hogs take advantage of high seasonal abundances of insects, crabs and dead fish (Baron 1982, in Wolf and Conover 2003). On Santa Cruz Island, California, acorns and new growth of grasses and forbs are major components of the feral pig’s diet (Van Vuren 1984, in Wolf and Conover 2003).

In South Carolina fruits, especially acorns are the most common food type consumed in fall and winter; herbage and foliage are most common in the spring; roots are most common in the summer. Invertebrates and vertebrates are also consumed, though they were not as important. The consumption of woody plants may be underestimated in stomach contents surveys as the starches and sap obtained from the roots of such plants go undetected (Wood and Roark 1980, in Wolf and Conover 2003).

In the western South Texas Plains (introduced range) feral pigs have a spring-summer diet that consists mainly of vegetation, while acorns are their winter food source. Their autumn diet consists of roots and corn. Animal matter consisting of deer, morning doves, reptiles and other birds represents a small portion of the hog's diet. Of these, reptiles were the most susceptible to predation (Taylor and Hellgren 1997, in Wolf and Conover 2003).

In one study conducted in Hawaii by Diong 1982, food habits were characterised by (1) an omnivorous diet consisting mainly of plant matter, (2) a staple of tree ferns, (3) a seasonal switch from tree ferns to strawberry guava, and (4) a strong reliance of earthworms as a source of animal protein. The dietary range covered 40 plant species (63% herbaceous species, 33% trees and woody vine). Tree ferns were the most concentrated source of sugar and starch.

General Impacts
Please follow this link for details on the general impacts of Sus scrofa compiled by the ISSG.
Management Info
Poisoning with sodium monofluoracetate (1080) is the most popular method used to control feral pigs. Most pigs vomit within four hours of ingestion. This may be potentially hazardous to nontarget organisms and may result in the survival of the pig. The use of anti-emetics such as metoclopramide, thiethylperazine and prochlorperazine may prevent vomiting at high doses (O’Brien et al. 1986, in Wolf and Conover 2003).

A vaccine for pseudorabies and swine brucellosis in fish meal bait may be used in late summer (when natural food supplies are low) to control these diseases (Fletcher et al. 1990, in Wolf and Conover 2003).

In the mid 1900s New Zealand conservation practitioners applied mainland hunting techniques to eradicate feral pig populations from small islands (<200 ha, Veitch and Bell, 1990, in Cruz et al. 2005). More recently poisoning techniques have been developed to control or eradicate feral pig populations (Choquenot et al., 1990; O’Brien and Lukins, 1990, in Cruz et al. 2005). Hunting and poisoning techniques used in combination, now facilitate pig eradication efforts on larger islands (Lombardo and Faulkner, 2000, Schuyler et al., 2002, Veitch and Bell, 1990, in Cruz et al. 2005).

In Hawaii, snaring has been used to control pigs within 600–800 km² fenced enclosures located in remote areas of rain forest in the Haleakala National Park (Maui) (Anderson and Stone 1993). Many people place a high cultural value on pigs (ie: using them as a food convenient food source) so that removing them from designated areas may not be acceptable without a clear idea of the benefits. Snaring would is not always be an acceptable method of control. In addition, the fact that pigs are highly mobile means it is uneconomic for an individual landowners or controlling agency to control them (as pigs as they quickly move in from adjacent properties to replace the removed ones).

Much wisdom and insight can be gained from the case study of pig removal from Santiago Island in the Galapagos Archipelago (off the coast of Ecuador). Factors that proved critical to the successful eradication of the feral pig on the island were: (1) a sustained effort, (2) an effective poisoning campaign, (3) a hunting program, (4) access to animals by cutting more trails and, (5) an intensive monitoring program. Throughout the 1970s and 1980s, hunting effort was low (<500 hunter-days/year), while in the early 1990s effort increased but fluctuated. In contrast, the revised campaign in the mid-1990s resulted in a continuous, minimum annual effort of 1500 hunter-days/year. Hunter access to pigs was critical. Extra trails were cut and goats were not hunted in order to keep vegetation suppressed (allowing hunters and dogs access to all areas of the island). Motivating hunters was a continual challenge, especially when pigs were at low densities. However, social, moral boosting events and financial incentives maintained hunter motivation. While the poisoning campaign killed relatively few pigs compared to hunting, the low cost of the poisoning made such efforts especially cost-effective. The compounds used were toxic to most species, and thus the pros of using them for eradication had to be balanced with the potential impact on non-target species (Donlan et al., 2003a, in Cruz et al. 2005). In 2000, six months after the last pig was shot, the last pig was poisoned following an intensive monitoring effort. A sustained monitoring effort was critical to successful eradication. The lack of such an effort is responsible for many eradication failures (Campbell et al., 2004, in Cruz et al. 2005).
Pathway
Expansion into new areas can result from transport for hunting, escape from confined facilities, dispersal of wild populations and escape of domestic swine from free ranging commercial ranches (Gipson Hlavachick And Berger 1998, in Wolf and Conover 2003). Released as food.

Principal source:

Compiler: IUCN SSC Invasive Species Specialist Group
Updates with support from the Overseas Territories Environmental Programme (OTEP) project XOT603, a joint project with the Cayman Islands Government - Department of Environment

Review:

Publication date: 2010-05-18

ALIEN RANGE

| [22] UNITED STATES | [1] VIRGIN ISLANDS, U.S. |
| [1] WALLIS AND FUTUNA |

Red List assessed species 281: EX = 7; EW = 5; CR = 109; EN = 81; VU = 54; NT = 14; LR/nt = 1; DD = 1; LC = 9;

Abutilon sandwicense CR
Alectryon macrococcus CR
Alsinidendron lychnoides CR
Acacia koaia VU
Alphitonia ponderosa VU
Alsinidendron obovatum CR
<table>
<thead>
<tr>
<th>FULL ACCOUNT FOR:</th>
<th>Sus scrofa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alsinidendron trinerve</td>
<td>CR</td>
</tr>
<tr>
<td>Anas aucklandica</td>
<td>VU</td>
</tr>
<tr>
<td>Aphelocoma insularis</td>
<td>NT</td>
</tr>
<tr>
<td>Araucaria hunsteinii</td>
<td>LR/nt</td>
</tr>
<tr>
<td>Argyroxihiphiium sandwicense</td>
<td>VU</td>
</tr>
<tr>
<td>Bidens conjuncta</td>
<td>VU</td>
</tr>
<tr>
<td>Bidens popullifolia</td>
<td>VU</td>
</tr>
<tr>
<td>Bonamia menziessi</td>
<td>CR</td>
</tr>
<tr>
<td>Bulimus darwini</td>
<td>VU</td>
</tr>
<tr>
<td>Calamagrostis expansa</td>
<td>VU</td>
</tr>
<tr>
<td>Callerya neocaledonica</td>
<td>CR</td>
</tr>
<tr>
<td>Canavalia molokaiensis</td>
<td>CR</td>
</tr>
<tr>
<td>Casuarius bennetti</td>
<td>NT</td>
</tr>
<tr>
<td>Chamaesycye deppeana</td>
<td>CR</td>
</tr>
<tr>
<td>Chamaeysycye remyi</td>
<td>CR</td>
</tr>
<tr>
<td>Chamaeysycye sparsiﬂora</td>
<td>VU</td>
</tr>
<tr>
<td>Cheirodendron dominii</td>
<td>EN</td>
</tr>
<tr>
<td>Christella boydiae</td>
<td>EN</td>
</tr>
<tr>
<td>Clermontia drepanomorpha</td>
<td>EN</td>
</tr>
<tr>
<td>Clermontia lindseyana</td>
<td>EN</td>
</tr>
<tr>
<td>Clermontia pyrularia</td>
<td>CR</td>
</tr>
<tr>
<td>Clermontia waimeae</td>
<td>EN</td>
</tr>
<tr>
<td>Coenocorypha aucklandica</td>
<td>NT</td>
</tr>
<tr>
<td>Ctenitis squamigera</td>
<td>CR</td>
</tr>
<tr>
<td>Cyanea asarifolia</td>
<td>CR</td>
</tr>
<tr>
<td>Cyanea crispa</td>
<td>CR</td>
</tr>
<tr>
<td>Cyanea eleeleensis</td>
<td>CR</td>
</tr>
<tr>
<td>Cyanea horrida</td>
<td>CR</td>
</tr>
<tr>
<td>Cyanea st-johnii</td>
<td>CR</td>
</tr>
<tr>
<td>Cyanea truncata</td>
<td>EW</td>
</tr>
<tr>
<td>Cyclura cornuta</td>
<td>VU</td>
</tr>
<tr>
<td>Cytrandra giffardii</td>
<td>EN</td>
</tr>
<tr>
<td>Cytrandra polyantha</td>
<td>CR</td>
</tr>
<tr>
<td>Dasyornis brachypterus</td>
<td>EN</td>
</tr>
<tr>
<td>Diomedea antipodensis</td>
<td>VU</td>
</tr>
<tr>
<td>Diomedea epomophora</td>
<td>VU</td>
</tr>
<tr>
<td>Ducula galeata</td>
<td>EN</td>
</tr>
<tr>
<td>Engaeus martigener</td>
<td>EN</td>
</tr>
<tr>
<td>Engaewa similis</td>
<td>LC</td>
</tr>
<tr>
<td>Epicrates monensis</td>
<td>EN</td>
</tr>
<tr>
<td>Erythura gouldiae</td>
<td>EN</td>
</tr>
<tr>
<td>Euastacus australasiensis</td>
<td>LC</td>
</tr>
<tr>
<td>Euastacus bidawalis</td>
<td>EN</td>
</tr>
<tr>
<td>Euastacus brachythorax</td>
<td>EN</td>
</tr>
<tr>
<td>Euastacus claytoni</td>
<td>EN</td>
</tr>
<tr>
<td>Euastacus dalagarbe</td>
<td>CR</td>
</tr>
<tr>
<td>Euastacus diversus</td>
<td>EN</td>
</tr>
<tr>
<td>Alsinidendron viscosum</td>
<td>CR</td>
</tr>
<tr>
<td>Anas wyvilliana</td>
<td>EN</td>
</tr>
<tr>
<td>Apteryx haastii</td>
<td>VU</td>
</tr>
<tr>
<td>Argyroxihiphiium kauense</td>
<td>CR</td>
</tr>
<tr>
<td>Astelia waialealaei</td>
<td>CR</td>
</tr>
<tr>
<td>Bidens cosmoides</td>
<td>EN</td>
</tr>
<tr>
<td>Bobea sandwicensis</td>
<td>VU</td>
</tr>
<tr>
<td>Branta sandvicensis</td>
<td>VU</td>
</tr>
<tr>
<td>Buteo solitarius</td>
<td>NT</td>
</tr>
<tr>
<td>Calamagrostis hillebrandii</td>
<td>EN</td>
</tr>
<tr>
<td>Camarhynchus pauper</td>
<td>CR</td>
</tr>
<tr>
<td>Caretta caretta</td>
<td>EN</td>
</tr>
<tr>
<td>Canavalia molokaiensis</td>
<td>CR</td>
</tr>
<tr>
<td>Charpentiera densiflora</td>
<td>CR</td>
</tr>
<tr>
<td>Chelonia mydas</td>
<td>EN</td>
</tr>
<tr>
<td>Clermontia calophylla</td>
<td>EN</td>
</tr>
<tr>
<td>Clermontia hawaiensis</td>
<td>VU</td>
</tr>
<tr>
<td>Clermontia peleana</td>
<td>EW</td>
</tr>
<tr>
<td>Clermontia tuberculata</td>
<td>EN</td>
</tr>
<tr>
<td>Colubrina oppositifolia</td>
<td>CR</td>
</tr>
<tr>
<td>Cyanea acuminata</td>
<td>CR</td>
</tr>
<tr>
<td>Cyanea asplenifolia</td>
<td>CR</td>
</tr>
<tr>
<td>Cyanea dunbariae</td>
<td>CR</td>
</tr>
<tr>
<td>Cyanea glabra</td>
<td>CR</td>
</tr>
<tr>
<td>Cyanea pinnatifida</td>
<td>EW</td>
</tr>
<tr>
<td>Cyanea superba</td>
<td>EW</td>
</tr>
<tr>
<td>Cyclura collei</td>
<td>CR</td>
</tr>
<tr>
<td>Cyclura stejnegeri</td>
<td>EN</td>
</tr>
<tr>
<td>Cytrandra kaulantha</td>
<td>CR</td>
</tr>
<tr>
<td>Cytrandra waiolanii</td>
<td>EW</td>
</tr>
<tr>
<td>Dermochelys coriacea</td>
<td>CR</td>
</tr>
<tr>
<td>Diomedea dabbenena</td>
<td>CR</td>
</tr>
<tr>
<td>Diploglossus montisserrati</td>
<td>CR</td>
</tr>
<tr>
<td>Emoia adspersa</td>
<td>EN</td>
</tr>
<tr>
<td>Engaeus urostrictus</td>
<td>VU</td>
</tr>
<tr>
<td>Engaewa walpolea</td>
<td>EN</td>
</tr>
<tr>
<td>Eretmochelys imbricata</td>
<td>CR</td>
</tr>
<tr>
<td>Euastacus armatus</td>
<td>DD</td>
</tr>
<tr>
<td>Euastacus balanesis</td>
<td>EN</td>
</tr>
<tr>
<td>Euastacus bindai</td>
<td>CR</td>
</tr>
<tr>
<td>Euastacus clarkiae</td>
<td>CR</td>
</tr>
<tr>
<td>Euastacus crassus</td>
<td>EN</td>
</tr>
<tr>
<td>Euastacus dharawalus</td>
<td>CR</td>
</tr>
<tr>
<td>Euastacus eungella</td>
<td>CR</td>
</tr>
</tbody>
</table>
FULL ACCOUNT FOR: Sus scrofa

GLOBAL INVASIVE SPECIES DATABASE
FULL ACCOUNT FOR: *Sus scrofa*

Numenius tahiensis VU
Oreomystis bairdi CR
Palmeria dolei CR
Pelagodoxa henryana CR
Phalacrocorax colensoi VU
Phalacrocorax onslowi CR
Phlegmariurus nutans CR
Phyllostegia kaalaensis CR
Pinaroloxias inornata VU
Potorous longipes EN
Pritchardia glabrata EN
Pritchardia lanaeiensis EN
Pritchardia limahuliensis CR
Pritchardia perlmanii EN
Procellaria conspicillata VU
Psepholus chrysopterygius EN
Pseudonestor xanthophyrs CR
Psittacula equeus EN
Pteralyxia kauaiensis EN
Pterodroma axillaris EN
Pterodroma caribbaea CR
Pterodroma leucotera VU
Pterodroma phaeopygia CR
Pterodroma solandri VU
Puffinus auricularis CR
Puffinus huttoni EN
Rhacodactylus auriculatus LC
Rhionaeschna galapagoensis EN
Rhynochetes jubatus EN
Setonix brachyurus VU
Sus cebifrons CR
Sus philippensis VU
Tachecampylaea cynaica EN
Tachecampylaea romagnoli CR
Taudactylus diurnus EX
Taudactylus rheiophilus CR
Thalassarche steadi NT
Tinogonia smaragdites EN
Todiramous godeffroyi CR
Trigonostemon cherieri CR
Typhlops biminiensis NT
Urosaurus clarionensis VU
Vini ultramarina EN
Xylosma crenatum CR

Oedodera marmorata CR
Oreomystis mana EN
Paroreomyza montana EN
Phaeognathus hubrichti EN
Phalacrocorax featherstoni EN
Phalanger alexandrae EN
Phylloscopus amoensis VU
Phyllostegia mollis CR
Potamia fluviatile NT
Pritchardia affinis CR
Pritchardia kaala CR
Pritchardia lanigera EN
Pritchardia napaliensis CR
Pritchardia viscosa CR
Procellaria parkinsoni VU
Pseudobulweria rostrata NT
Pseudophryne pengilleyi EN
Psitirostra psittacea CR
Pterodroma arminjoniana VU
Pterodroma brevipes VU
Pterodroma hasitata EN
Pterodroma magnentae CR
Pterodroma sandwichensis VU
Pteropus mariannus EN
Puffinus bulleri VU
Puffinus newelli EN
Rheobatrachus silus EX
Rhyncholema pratrum EN
Schiedea kaala CR
Simiscincus aurantiacus VU
Sus oliveri EN
Sylvilagus graysoni EN
Tachecampylaea rapsaila VU
Taudactylus acutirostris CR
Taudactylus pleione CR
Tetraplasandra gymnocaarpa CR
Thylogale calabyi EN
Todiramphus farquhari NT
Todiramphus ruficollaris VU
Turnix melanogaster VU
Urera kaala CR
Vestiaria coccinea VU
Xantusia riversiana LC

BIBLIOGRAPHY
90 references found for *Sus scrofa*
Management information

Summary: This report reviews available information on the adverse effects of 14 alien vertebrates considered to be ?significant invasive species on islands of the South Pacific and Hawaii, supplementing the authors? experience with that of other workers.

Center for Aquatic and Invasive Plants, University of Florida (IFAS), 2010. Chinese privet: Ligustrum sinense

Summary: Available from: http://plants.ifas.ufl.edu/node/231 [Accessed 10 March 2010]

Department of Primary Industries, Victoria, 2009. Impact Assessment - Small-leaf Privet (Ligustrum sinense) in Victoria

Department of Primary Industries, Victoria, 2009. Invasiveness Assessment - Small-leaf Privet (Ligustrum sinense) in Victoria

Ding, Jianqing; Reardon, Richard; Wu, Yun; Zheng, Hao; Fu, Weidong. 2006. Biological control of invasive plants through collaboration between China and the United States of America: a perspective. Biological Invasions. 8(7). OCT 2006. 1439-1450

Greene, Brian T. and Bernd Blossey, August 5, 2009. COS 58-1: Patterns of privet: Why is the invasive plant Ligustrum sinense Lour associated with urban watersheds in the southeastern United States. Wednesday, August 5, 2009 - 8:00 AM.

Greene, Brian T. and Bernd Blossey, August 5, 2009. COS 58-1: Patterns of privet: Why is the invasive plant Ligustrum sinense Lour associated with urban watersheds in the southeastern United States. Wednesday, August 5, 2009 - 8:00 AM.

94th ESA Annual Meeting Sunday August 2 -Friday, August 7 2009 Albuquerque, New Mexico.

Summary:

GLOBAL INVASIVE SPECIES DATABASE

FULL ACCOUNT FOR: Sus scrofa

Summary: The IUCN Red List of Threatened Species provides taxonomic, conservation status and distribution information on taxa that have been globally evaluated using the IUCN Red List Categories and Criteria. This system is designed to determine the relative risk of extinction, and the main purpose of the IUCN Red List is to catalogue and highlight those taxa that are facing a higher risk of global extinction (i.e. those listed as Critically Endangered, Endangered and Vulnerable). The IUCN Red List also includes information on taxa that are categorized as Extinct or Extinct in the Wild; on taxa that cannot be evaluated because of insufficient information (i.e. are Data Deficient); and on taxa that are either close to meeting the threatened thresholds or that would be threatened were it not for an ongoing taxon-specific conservation programme (i.e. are Near Threatened).

Summary: This compilation of information sources can be sorted on keywords for example: Baits & Lures, Non Target Species, Eradication, Monitoring, Risk Assessment, Weeds, Herbicides etc. This compilation is at present in Excel format, this will be web-enabled as a searchable database shortly. This version of the database has been developed by the IUCN SSC ISSG as part of an Overseas Territories Environmental Programme funded project XT0603 in partnership with the Cayman Islands Government - Department of Environment. The compilation is a work under progress, the ISSG will manage, maintain and enhance the database with current and newly published information, reports, journal articles etc.
Summary: Eradication case study in Turning the tide: the eradication of invasive species.
Summary: Eradication case study in Turning the tide: the eradication of invasive species.
Pacific Island Ecosystems at Risk (PIER), 2005. Risk Assessment: Ligustrum sinense Lour., Oleaceae
Pacific Island Ecosystems at Risk (PIER), 2010. Ligustrum sinense Lour., Oleaceae
Summary: Describes the eradication project for pigs on Santiago Island, Galapagos. Covers the entire project from pre-1997 to May 2001.
Summary: The feral pig management strategy outlines the best practises for the management of feral pigs to minimise their impact on the environment, economy and health of Queensland.
Summary: Eradication case study in Turning the tide: the eradication of invasive species.
GLOBAL INVASIVE SPECIES DATABASE
FULL ACCOUNT FOR: Sus scrofa

Summary: This database compiles information on alien species from British Overseas Territories. Available from: http://www.jncc.gov.uk/page-3660 [Accessed 10 November 2009]

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Williams, Rick & Patrick Minogue. 2008. Biology and Management of Chinese Privet, FR189, one of a series of the School of Forest Resources and Conservation Department. Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida

General information

Barthelat, pers. comm., 2007

Summary: Personal communication with Fabien Barthelat, an expert of flora of Mayotte.

Butaud and Meyer, pers. comm. 2007

Summary: Personal communication with Jean Fran?ois Butaud and Jean Yves Meyer, two experts on flora and fauna of French Polynesia
The species list sheet for the Mexican information system on invasive species currently provides information related to Scientific names, family, group and common names, as well as habitat, status of invasion in Mexico, pathways of introduction and links to other specialised websites. Some of the higher risk species already have a direct link to the alert page. It is important to notice that these lists are constantly being updated, please refer to the main page
(http://www.conabio.gob.mx/invasoras/index.php/Portada), under the section Novedades for information on updates.

Invasive species - mammals is available from:
http://www.conabio.gob.mx/invasoras/index.php/Species_invasoras_-_Mam%C3%ADferos [Accessed 30 July 2008]

Summary:

Summary: Available from:

Taylor, Constance E. S.; Magrath, Lawrence K.; Folley, Patricia; Buck, Paul; Carpenter, Sydney, 1996. Oklahoma vascular plants: Additions and distributional comments. Proceedings of the Oklahoma Academy of Science. 76(0). 1996. 31-34.

