C. madagascariensis occurs naturally along the western coast of Madagascar, but prefers the Northern, wetter part of the coast. C. grandiflora on the other hand prefers a drier climate. Where the two species overlap, C. madagascariensis is thought to outcompete C. grandiflora due to its preference of a wetter climate (Kriticos et al, 2003).
Principal source:
Compiler: IUCN SSC Invasive Species Specialist Group (ISSG) with support from the Overseas Territories Environmental Programme (OTEP) project XOT603, a joint project with the Cayman Islands Government - Department of Environment
Review: Under expert review
Publication date: 2010-06-08
Recommended citation: Global Invasive Species Database (2024) Species profile: Cryptostegia madagascariensis. Downloaded from http://iucngisd.org/gisd/species.php?sc=1628 on 24-11-2024.
Physical control: Starr et al (2003) suggest that small plants can be pulled by hand or dug out with the fruits bagged and disposed of properly, however the milky sap should be avoided. da Silva et al (2008) however do not recommend mechanical removal due to it being uneconomical for larger specimen, and that the sap is toxic.
Chemical control: Starr et al (2003) note that there are several chemical listed in Australia for Cryptostegia spp. control. Grazon DS, Banvel, Brushoff, Tordon, Velpar, Graslan, and 2, 4-D are all used, however as Cryptostegia grandiflora is the species causing most concern it is not known how effective these might be on C. madagascariensis. In Hawai'i, Garlon has be used in cut stump treatments as well as mechanical removal. Foliar spraying has been shown to be most effective on smaller plants. Basal bark spraying is not effective on multi-stemmed plants, however with singular-stemmed plants, the spray should be completely around the base. Root application has also been used in Australia, however this method is a non-selective method. It has however been found to useful by farmers that were far off in the bush and needed a lightweight method for controlling individual outliers (Starr et al, 2003).
Biological: There seems to be a few biological agents that can be used against C. madagascariensis. A new Schizomyia species was described by Gagne & Marohasy (2007) that causes galls on rubber vines. Although originally sort after as a bio-control agent for Cryptostegia grandiflora in Australia, galls caused by the species were also seen on C. madagascariensis, and thus could be used in management efforts. Huwer & McFadyen (1999) investigated the use of the hawk moth (Nephele densoi) as a potential bio-control agent in Australia against C. grandiflora and the possible effectiveness of the its Australian counterpart N. subvaria. They showed that N. densoi is capable of establishing on both Cryptostegia species, however the specificity of N. subvaria meant that it could not establish on either species. N. densoi however could be a potential bio-agent. The rubber vine rust Maravalia cryptostegiae and the rubber vine moth Euclasta whalleyi have proven to be the best methods to be used in Australia. These however do not out-right kill individuals, but cause adnormal defoliation, creating an energy sink which leads to reduced seed production (Starr et al, 2003).