Principal source:
Compiler: National Biological Information Infrastructure (NBII) & IUCN/SSC Invasive Species Specialist Group (ISSG)
Review: Dr. Brian Hazlett. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor. USA
Publication date: 2010-07-21
Recommended citation: Global Invasive Species Database (2025) Species profile: Orconectes rusticus. Downloaded from http://iucngisd.org/gisd/species.php?sc=217 on 28-03-2025.
O. rusticus aggressive nature, greater fitness, and large chelae and body size allow it to displace native crayfish from food and habitat (Byron & Wilson, 2001; Garvey et al, 2003; Garvey & Stein, 1993; Hill & Lodge, 1999; Klocker & Strayer, 2004). Displacement from food causes reduced fitness to its cogeners and displacement from habitat increases predation pressure (Hill & Lodge, 1994). O rusticus displaces native crayfish, O. virilis, and previous invader, O. propinquus, from lakes throughout northern Wisconsin (Byron & Wilson, 2001; Garvey & Stein, 1993; Hill & Lodge, 1994). Along with direct competition and displacement, research indicates that fish and other predators avoid O. rusticus because of its larger chelae and body size and this selective predation pressure is likely an important driver in the replacement of crayfish species by rusty crayfish (Roth & Kitchell, 2005; DiDonato & Lodge, 1999). O. rusticus is known to hybridize with native crayfish O. propinquus in Lake Michigan (Jonas et al, 2005). In northeastern United States, O. rusticus may pose a threat to native crayfish O. limosus, which it was found to dominate in shelter competition and aggression trials (Klocker & Strayer, 2004).
Rusty crayfish prey on threatened, native bivalves in northeastern United States. Although native crayfish also prey on these bivalves, O. rusticus can live at very high densities so the threat of increased predator populations can harm already threatened unionid populations (Klocker & Strayer, 2004; Kuhlmann & Hazelton, 2007). O. rusticus also preys on snails and in Trout Lake, Wisconsin snails declined from >10 000 to <5 snails•m2 in one of the initially invaded areas (Wilson et al, 2004). Relative to control treatments, rusty crayfish were found to reduce the biomass of northeastern US native Lymnaea and Physa snails by >90% (Johnson et al, 2009). Furthermore, O. rusticus has been found to co-occur with Bellamya chinensis, an invasive snail with a thick shell that prevents predation by O. rusticus, in northern temperate lakes throughout the United States. The predation pressure of O. rusticus on native snail communities combined with competition and displacement by the B. chinensis has resulted in the reduction of native snail biomass (Johnson et al, 2009).
The reduction of macrophyte abundance is another important impact of O. rusticus. Small-scale, comparative, and multi-lake studies confirm that macrophyte species richness and abundance decline significantly in lakes invaded by O. rusticus (Alexander et al, 2008; Rosenthal et al, 2006; Roth et al, 2007; Wilson et al, 2004). In northern Wisconsin, studies found the proportion of sites with no macrohpyte cover to increase from 40-73% (Roth et al, 2007), and submerged macrophyte species richness to decline by as much as 80% with the invasion of O. rusticus (Wilson et al, 2004).
O. rusticus introduction is also believed to reduced sport fish populations especially pan-fish Lepomis macrochirus and L. gibbossus by either egg predation or competition with juveniles. Researchers have calculated fisheries damages of O. rusticus in Vilas County, Wisconsin to be about 1.5 million annually (Keller et al, 2008).
Additional cascading ecological impacts have been associated with O. rusticus. Decreasing macroinvertebrate densities and increasing periphyton productivity have been found to correlate with increasing O. rusticus densities (Charlebois & Lamberti, 1996). In Trout Lake, Wisconsin, mean abundance of Odonata, Amphipoda, and Trichoptera decreased significantly lake-wide with the invasion of O. rusticus (Wilson et al, 2004).
Physical: Intensive harvest will not eradicate or control crayfish, but may help reduce adult populations and minimize some impacts.
\nSome researchers have suggested that nuisance populations of rusty crayfish are the result of poor fishery management and that by restoring a healthy population of bass and sunfish, O. rusticus would be less disruptive in some lakes.
Populations of Orconectes rusticus may be reduced by trapping or fish predation. Although neither practice may provide eradication both have been found to be effective means of reducing negative impacts and decreasing population sizes of O. rusticus (Hein et al, 2006; Hein et al, 2007). The use of electric fences along with hand removal in experimental plots was also found to reduce densities of O. rusticus and may have implications for macrophyte restoration efforts (Peters et al, 2008).
The control of a rusty crayfish population in Sparkling Lake, an isolated lake in northern Wisconsin by trapping adult crayfish and restricting fishing, thereby increasing fish populations and predation on small crayfish was found to effectively reduce O. rusticus populations there. To protect and enhance populations of rusty crayfish predators, the Wisconsin Department of Natural Resources instated strict regulations on smallmouth bass. Also, wire minnow traps with an enlarged (3.5 cm diameter) opening were baited with 4 to 5 frozen smelt (8–13 g each), set 1–2 m deep at ~10 m intervals, and used to capture O. rusticus. Over a 3 year period, traps and predatory fishes removed substantial portions of the rusty crayfish population. Because more crayfish were vulnerable to and removed by fish predation than by trapping, fish predation caused a larger decline in the population growth rate. However, trapping removed crayfish with the highest reproductive value and caused the largest decline in population growth rate per individual crayfish removed. Researchers estimated that traps and fish removed a total of 1,212,148 individuals and 1212 kg of crayfish over three years of removal. Together they removed approximately 55% of the population in 2003 (Hein et al, 2006). Removal trapping catch rates declined by 95% over the last 4 years of removal from Sparkling Lake (Hein et al, 2007). Trapping was found to be most effective on cobble substrates (Hein et al, 2006). A similar trapping study of O. rusticus found that captured individuals left in traps excluded uncaptured individuals from entering traps (Ogle & Kret, 2008).
The experimental use of electric fencing along with hand removal were able to significantly reduce O. rusticus densities in electric plots compared to non-electric control plots in Lake Ottawa, located in the Ottawa National Forest, Michigan. Macrohpytes Potamogeton richardsonii and Elodea canadensis were eliminated within a matter of days in the control plots and within 3 wk in the electric plots (Peters et al, 2008).
Chemical: There are means of chemical control for Orconectes rusticus. However, none currently registered have been found to selectively kill O. rusticus without effecting other species of crayfish (Gunderson, 2008). An evaluation of several potential chemical controls found a synthetic pyrethroid (Baythroid) at 25 .mu.g/L was most effective and produced a complete kill of crayfish in the pond and was also the most selective for crayfish in laboratory tests (Bills & Marking, 1992). High, sub-lethal concentrations of metolachlor (80 ppb) may interfere with the ability of O. rusticus to receive or respond to social signals and thus affect certain agonistic behavior, implications may be useful to its management (Cook & Moore, 2008).