Alaskan Department of Fish and Game. 2002. Atlantic Salmon: A White Paper - March 5, 2002.
Amundrud, T. L.; Murray, A. G., 2009. Modelling sea lice dispersion under varying environmental forcing in a Scottish sea loch. Journal of Fish Diseases. 32(1). JAN 2009. 27-44.
Cadwallader, P. L. 1996. Overview of the impacts of introduced salmonids on Australian native fauna. Australian Nature Conservation Agency.
Centre for Environment, Fisheries & Aquaculture Science (CEFAS)., 2008. Decision support tools-Identifying potentially invasive non-native marine and freshwater species: fish, invertebrates, amphibians.Summary: The electronic tool kits made available on the Cefas page for free download are Crown Copyright (2007-2008). As such, these are freeware and may be freely distributed provided this notice is retained. No warranty, expressed or implied, is made and users should satisfy themselves as to the applicability of the results in any given circumstance. Toolkits available include 1) FISK- Freshwater Fish Invasiveness Scoring Kit (English and Spanish language version); 2) MFISK- Marine Fish Invasiveness Scoring Kit; 3) MI-ISK- Marine invertebrate Invasiveness Scoring Kit; 4) FI-ISK- Freshwater Invertebrate Invasiveness Scoring Kit and AmphISK- Amphibian Invasiveness Scoring Kit. These tool kits were developed by Cefas, with new VisualBasic and computational programming by Lorenzo Vilizzi, David Cooper, Andy South and Gordon H. Copp, based on VisualBasic code in the original Weed Risk Assessment (WRA) tool kit of P.C. Pheloung, P.A. Williams & S.R. Halloy (1999).
The decision support tools are available from: http://cefas.defra.gov.uk/our-science/ecosystems-and-biodiversity/non-native-species/decision-support-tools.aspx [Accessed 13 October 2011]
The guidance document is available from http://www.cefas.co.uk/media/118009/fisk_guide_v2.pdf [Accessed 13 January 2009].
Cole, R. 2002. Impacts of marine farming on wild fish populations. National Institute of Water and Atmospheric Research.
Crossman, E. J. 1991. Introduced Freshwater Fishes: A Review of the North American Perspective With Emphasis on Canada. Can. J. Fish. Aquat. Sci., Vol. 48 (Suppl. 1), 1991.
Gajardo, G & L Laikre., 2003. Chilean aquaculture boom isbased on exotic salmon resources: a conservation paradox. Conservation Biology 17: 1173-1174.
Institute of Freshwater Research. 2002. Performance and Ecological Impacts of Introduced and Escaped fish: Physiological and Behavioral Mechanisms. National Board OF Fisheries, Sweden. Goteborg Univserity.
Iriarte, J. Augustin Gabriel A. Lobos & Fabian M. Jaksic., 2005. Invasive vertebrate species in Chile and their control and monitoring by governmental agencies. Revista Chilena de Historia Natural 78: 143-154, 2005
Mendoza, R.E.; Cudmore, B.; Orr, R.; Balderas, S.C.; Courtenay, W.R.; Osorio, P.K.; Mandrak, N.; Torres, P.A.; Damian, M.A.; Gallardo, C.E.; Sanguines, A.G.; Greene, G.; Lee, D.; Orbe-Mendoza, A.; Martinez, C.R.; and Arana, O.S. 2009. Trinational Risk Assessment Guidelines for Aquatic Alien Invasive Species. Commission for Environmental Cooperation. 393, rue St-Jacques Ouest, Bureau 200, Montr�al (Qu�bec), Canada. ISBN 978-2-923358-48-1.Summary: In 1993, Canada, Mexico and the United States signed the North American Agreement on Environmental Cooperation (NAAEC) as a side agreement to the North American Free Trade Agreement (NAFTA). The NAAEC established the Commission for Environmental Cooperation (CEC) to help the Parties ensure that improved economic efficiency occurred simultaneously with trinational environmental cooperation. The NAAEC highlighted biodiversity as a key area for trinational cooperation. In 2001, the CEC adopted a resolution (Council Resolution 01-03), which created the Biodiversity Conservation Working Group (BCWG), a working group of high-level policy makers from Canada, Mexico and the United States. In 2003, the BCWG produced the �Strategic Plan for North American Cooperation in the Conservation of Biodiversity.� This strategy identified responding to threats, such as invasive species, as a priority action area. In 2004, the BCWG, recognizing the importance of prevention in addressing invasive species, agreed to work together to develop the draft CEC Risk Assessment Guidelines for Aquatic Alien Invasive Species (hereafter referred to as the Guidelines). These Guidelines will serve as a tool to North American resource managers who are evaluating whether or not to introduce a non-native species into a new ecosystem. Through this collaborative process, the BCWG has begun to implement its strategy as well as address an important trade and environment issue. With increased trade comes an increase in the potential for economic growth as well as biological invasion, by working to minimize the potential adverse impacts from trade, the CEC Parties are working to maximize the gains from trade while minimizing the environmental costs.
Available from: English version: http://www.cec.org/Storage/62/5516_07-64-CEC%20invasives%20risk%20guidelines-full-report_en.pdf [Accessed 15 June 2010]
French version: http://www.cec.org/Storage/62/5517_07-64-CEC%20invasives%20risk%20guidelines-full-report_fr.pdf [Accessed 15 June 2010]
Spanish version: http://www.cec.org/Storage/62/5518_07-64-CEC%20invasives%20risk%20guidelines-full-report_es.pdf [Accessed 15 June 2010].
Moffitt, C. M. 2003. The Implications of Aquaculture Production and Development on Sustainable Fisheries. U.S. Geological Survey, Idaho Cooperative Fish and Wildlife Research Unit, Department of Fish and Wildlife Resources, University of Idaho.
Naylor, Rosamond; Hindar, Kjetil; Fleming, Ian A.; Goldburg, Rebecca; Volpe, John; Whoriskey, Fred; Eagle, Josh; Kelso, Dennis; Mangel, Marc; Williams, Susan. 2005. Fugitive Salmon: Assessing the Risks of Escaped Fish from Net-Pen Aquaculture. Bioscience, May2005, Vol. 55 Issue 5, p427-437, 11p, 1 chart, 1 graph; (AN 16978376)
Naylor, Rosamond L., Susan L. Williams, Donald R. Strong., 2001. Aquaculture--A Gateway for Exotic Species. Science 23 November 2001: Vol. 294. no. 5547, pp. 1655 - 1656 DOI: 10.1126/Science.1064875
Olaussen, Jon Olaf; Skonhoft, Anders., 2008. On The Economics of Biological Invasion: An Application to Recreational Fishing. Natural Resource Modeling. 21(4). WIN 2008. 625-653
Pedersen, S., G. Rasmussen & E. E. Nielssen, L . Karlsson & P . Nybergs., 2007. Straying of Atlantic salmon, Salmo salar, from delayed and coastal releases in the Baltic Sea, with special focus on the Swedish west coast. Fisheries Management and Ecology, 2007, 14, 21�32
Volpe, J. Undated. Super un-Natural Atlantic Salmon in BC Waters. The David Suzuki Foundation.
Carr, J. W., J. M. Anderson, F. G. Whoriskey and T. Dilworth., 1997. The occurrence and spawning of cultured Atlantic salmon (Salmo salar) in a Canadian river. ICES Journal of Marine Science: Journal du Conseil 1997 54(6):1064-1073; doi:10.1016/S1054-3139(97)80010-0
Dextrase, Alan J. & Nicholas E. Mandrak., 2006. Impacts of alien invasive species on freshwater fauna at risk in Canada. Biological Invasions (2006) 8: 13�24 Springer 2006 DOI 10.1007/s10530-005-0232-2
Dietrich, Jason P.; Bowlby, James N.; Morrison, Bruce J.; Jones, Nicholas E., 2008. The Impacts of Atlantic Salmon Stocking on Rainbow Trout in Barnum House Creek, Lake Ontario. Journal of Great Lakes Research. 34(3). SEP 2008. 495-505.
Duhamel, G., Gasco, N. et Davaine, P. 2005. Poissons des �les Kerguelen et Crozet, guide r�gional de l�oc�an Austral. (Patrimoines naturels 63).
Elvira, B. 2001. Identification of non-native freshwater fishes established in Europe and assessment of their potential threats to the biological diversity. Convention on the conservation of European wildlife and natural habitats: T-PVS (2001) 6.
Fausch, Kurt D., Interspecific competition and juvenile Atlantic salmon (Salmo salar): on testing effects and evaluating the evidence across scales. Can. J. Fish. Aquat. Sci. 55(Suppl. 1): 218�231 (1998)
FishBase, 2005. Salmo salar. Froese, R. and D. Pauly. Editors.Summary: FishBase is a global information system with all you ever wanted to know about fishes . FishBase on the web contains practically all fish species known to science. FishBase was developed at the WorldFish Center in collaboration with the Food and Agriculture Organization of the United Nations (FAO) and many other partners, and with support from the European Commission (EC). Since 2001 FishBase is supported by a consortium of seven research institutions. You can search on
Search FishBase This species profile is available from: http://www.fishbase.org/Nomenclature/SynonymsList.cfm?ID=236&GenusName=Salmo&SpeciesName=salar [Accessed 4 April 2005]
Frenot, Y., Chown, S.L., Whinam, J., Selkirk, P., Convey, P., Skotnicki, M., & Bergstrom, D. 2005. Biological invasions in the Antarctic: extent, impacts and implications. Bio. Rev, 80, 45-72.Summary: Article de synth�se sur les invasions biologiques (plantes, invert�br�s et vert�br�s) en antarctique.
Available from: http://www.anta.canterbury.ac.nz/resources/non-native%20species%20in%20the%20antarctic/Talk%202%20Frenot.pdf [Accessed 4 April 2008]
Freshwater Biodata Information System New Zealand (FBIS), 2005
Summary: The Freshwater Biodata Information System (FBIS) contains fish, algae, aquatic plant and invertebrate data and metadata gathered from New Zealand s freshwater streams, rivers and lakes. FBIS provides different ways to search for biodata: choose a predefined search from a list of common searches; use the map view to draw a box on a map and search for biodata; or create your own search for maximum search flexibility. FBIS is offered as a nationally available resource for the New Zealand public, institutions and companies who need access to a well-maintained long-term data repository.
Available from: https://secure.niwa.co.nz/fbis/validate.do?search=common [Accessed 5 August 2005]
Gozlan, Rodolphe Elie., 2008. Introduction of non-native freshwater fish: is it all bad? Fish & Fisheries, 2008, 9, 106�115
Gross, Mart R., 1998. One species with two biologies: Atlantic salmon (Salmo salar) in the wild and in aquaculture. Can. J. Fish. Aquat. Sci. Vol. 55(Suppl. 1), 1998
Hickley, P., and S. Chare. 2004. Fisheries for non-native species in England and Wales: angling or the environment?. Fisheries Management & Ecology Volume 11 Issue 3-4 Page 203 - June 2004.
Hindar, Kjetil ; Ian A. Fleming, Philip McGinnity, and Ola Diserud., 2006. Genetic and ecological effects of salmon farming on wild salmon: modelling from experimental results. ICES Journal of Marine Science, 63: 1234e1247 (2006) doi:10.1016/j.icesjms.2006.04.025
ITIS (Integrated Taxonomic Information System), 2005. Online Database Salmo salar.Summary: An online database that provides taxonomic information, common names, synonyms and geographical jurisdiction of a species. In addition links are provided to retrieve biological records and collection information from the Global Biodiversity Information Facility (GBIF) Data Portal and bioscience articles from BioOne journals.
Available from: http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=161996 [Accessed 4 April 2005]
Josefsson, Melanie and Berta Andersson., 2001. The Environmental Consequences Species in the Swedish Lakes M�laren, Hj�lmaren, V�nern and V�ttern. Ambio Vol. 30 No. 8, Dec. 2001
Klemetsen, A., P. A. Amundsen, J. B. Dempson, B. Jonsson, N. Jonsson, M. F. O Connell , E. Mortensen., 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecology of Freshwater Fish Volume 12 Issue 1, Pages 1 - 59
Laikre, Linda., Anna Palme, Melanie Josefsson, Fred Utter and Nils Ryman., 2006. Release of Alien Populations in Sweden. Ambio Vol. 35, No. 5, August 2006
Lien, Marianne, E., 2005. `King of fish or `feral peril : Tasmanian Atlantic salmon and the politics of belonging. Environment and Planning D: Society and Space 2005, volume 23, pages 659 ^ 671
McGinnity, P., C. Stone, J. B. Taggart, D. Cooke, D. Cotter, R. Hynes, C. McCamley, T. Cross and A. Ferguson., 1997. Genetic impact of escaped farmed Atlantic salmon (Salmo salar L.) on native populations: use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. ICES Journal of Marine Science: Journal du Conseil 1997 54(6):998-1008; doi:10.1016/S1054-3139(97)80004-5
McGinnity, Philip., Paulo Prodohl, Andy Ferguson, Rosaleen Hynes, Niall 0 Maoileidigh, Natalie Baker, Deirdre Cotter, Brendan O Hea, Declan Cooke, Ger Roganl, John Taggart and Tom Cross., 2003. Fitness Reduction and Potential Extinction of Wild Populations of Atlantic Salmon, Salmo salar, as a Result of Interactions with Escaped Farm Salmon. Proceedings: Biological Sciences, Vol. 270, No. 1532 (Dec. 7, 2003), pp. 2443-2450
Morris, Matthew R. J.; Fraser, Dylan J.; Heggelin, Anthony J.; Whoriskey, Frederick G.; Carr, Jonathan W.; O Neil, Shane F.; Hutchings, Jeffrey A., 2008. Prevalence and recurrence of escaped farmed Atlantic salmon (Salmo salar) in eastern North American rivers. Canadian Journal of Fisheries & Aquatic Sciences. 65(12). DEC 2008. 2807-2826.
Perez, J. E., C. Alfonsi, M. Nirchio, C. Munoz, J. A. Gomez. 2003. The introduction of exotic species in aquaculture: A solution or part of the problem. Eassays. Apr 2003, Vol. 28 N� 4
Seo, Kyung Suk and Yoon Lee., 2009. Chapter 32: A First Assessment of Invasive Marine Species on Chinese and Korean Coasts In G. Rilov, J.A. Crooks (eds.) Biological Invasions in Marine Ecosystems. 577 Ecological Studies 204, � Springer-Verlag Berlin Heidelberg 2009
Summary: Available from: http://filaman.uni-kiel.de/Country/CountryList.php?ID=236&GenusName=Salmo&SpeciesName=salar [Accessed 10 April 2009]
Soto, Doris., Ivan Arismendi, Jorge Gonzalez, Jose Sanzana, Fernando Jara, Carlos Jara, Erwin Guzman and Antonio Lara., 2006. Southern Chile, trout and salmon country: invasion patterns and threats for native species. Revista Chilena de Historia Natural 79: 97-117, 2006
Thorstad, Eva B., Fleming, Ian A., McGinnity, Philip, Soto, Doris, Wennevik, Vidar, and Whoriskey, Fred., 2006. Incidence and impacts of escaped farmed Atlantic salmon Salmo salar in nature. Report from the Technical Working group on Escapes. World Wildlife Federation.Summary: Available: http://www.worldwildlife.org/what/globalmarkets/aquaculture/WWFBinaryitem7602.pdf. [Accessed 20 May 2009]
Townsend, Colin R., 1996. Invasion biology and ecological impacts of brown trout Salmo trutta in New Zealand. Biological Conservation Volume 78, Issues 1-2, October-November 1996, Pages 13-22
Verspoor, V., 1988. Widespread hybridization between native Atlantic salmon, Salmo salar, and introduced brown trout, S. trutta, in eastern Newfoundland. J. Fish Biol. (1988) 32,321-334
Volpe, John P., Bradley R. Anholt, and Barry W. Glickman., 2001. Competition among juvenile Atlantic salmon (Salmo salar) and steelhead (Oncorhynchus mykiss): relevance to invasion potential in British Columbia. Can. J. Fish. Aquat. Sci. 58: 197�207 (2001) � 2001 DOI: 10.1139/cjfas-58-1-197
Young, Kyle A., Jessica Stephenson, Alexandre Terreau, Anne-Flore Thailly, Gonzalo Gajardo, Carlos Garcia de Leaniz., 2008. The diversity of juvenile salmonids does not affect their competitive impact on a native galaxiid. Biol Invasions DOI 10.1007/s10530-008-9372-5
Youngson, A.F. and E. Verspoor., 1998. Interactions between wild and introduced Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 55(Suppl. 1): 153�160 (1998)