Please see PaDIL (Pests and Diseases Image Library) Species Content Page Mediterranean fruit fly for high quality diagnostic and overview images.
They may emerge in large numbers just after daybreak and pupate in the soil or whatever is available. Minimum duration of the pupal stage is 6-13 days when the mean temperature ranged from 24-26 C [76-79 F]. Pupae usually develop in soil an inch or two below the surface.
Adults emerge from the pupal cases in large numbers early in the day during warm weather and more sporadically in cooler weather. Females usually die soon after they stop ovipositing. The length of time required for C. Capitata to develop from egg to adult is about 21-30 days under tropical conditions. According to Thomas et al. (2001), “adults die within four days if they cannot obtain food. Usually about 50% of the flies die during the first two months after emergence. Some adults may survive up to six months or more under favourable conditions of food (fruit, honeydew, or plant sap), water, and cool temperatures. When host fruit is continuously available and weather conditions favourable for many months, successive generations will be large and continuous. Lack of fruit for three to four months reduces the population to a minimum.”
Modelling of medfly dispersal distances done by Meats & Smallridge (2006) found that the majority (90%) of medflies displaced only 400 – 700m.
Broughton & De Lima (n. d.) state that “In winter, the [Med]fly may become inactive in cold areas. Medfly can overwinter as adults, as eggs and larvae (in fruit), or as pupae in the ground. Adult Medflies are active in winter when temperatures exceed 12 ºC. ” They also recommend that any control methods should begin in Spring, as the temperature increase allows overwintering flies to become active, to prevent population sizes from increasing rapidly to problematic levels.
As C. Capitata is polyphagous, it uses the various suitable hosts found within in its environment as stepping stones, and often moves from one to another as fruit mature throughout the season (Cohen & Yuval, 2000). The fruit ripening sequence of an area is important in terms of early detection, allow the first Medfly of a season to be detected as early as possible (in the earliest-ripening fruit type).
Principal source: Mau and Kessing 1992. Ceratitis capitata (Wiedemann)
Compiler: National Biological Information Infrastructure (NBII) & IUCN/SSC Invasive Species Specialist Group (ISSG)
Updates with support from the Overseas Territories Environmental Programme (OTEP) project XOT603, a joint project with the Cayman Islands Government - Department of Environment
Review: Eric Jang \ Research Leader \ U.S. Pacific Basin Agric. Res. Center
Publication date: 2010-04-02
Recommended citation: Global Invasive Species Database (2024) Species profile: Ceratitis capitata. Downloaded from http://iucngisd.org/gisd/species.php?sc=521 on 24-11-2024.
Trapping for detection of populations; excluding populations by using foliage baits and chemical sprays and release of male sterile medflies to reduce populations require a great deal of resources and can have significant economic implications. Medflies are serious quarantine pests that also affect global trade. The presence of medflies often requires host crops to undergo quarantine treatments or other disinfestation procedure of certification of fly-free areas. The costs of such activities and phytosanitary regulatory compliance can be significant.
Cohen & Yuval (2000) point out that “C. capitata is polyphagous and, as such, uses the various hosts in its environment as stepping stones, moving from one to another as fruit mature throughout the season.” This gives Medfly the ability to destroy an area’s production of many fruits, and means that damage is not limited to just one fruit species, while also providing medflies with refuges from control efforts, serving as a source of reinfestation to surrounding private or commercial plots.
“Under International Plant Protection Convention (IPPC) Standards, C. capitata is considered to be a pest that is ‘transient, actionable, and under eradication’ in the United States’ (NAPPO, 2008). All non-European Tephritidae, including Ceratitis capitata, are regulated as quarantine pests by the European Union, and fruit being imported into Europe must be free of all life-stages of this pest (Rossler & Chen, 1994).
Chemical: An important measure to be taken to ensure success of any chemical control is the disposal of unwanted and medfly infested fruit. Several methods suggested for disposal are: soaking fruit in water topped by a layer of kerosene( to cut off oxygen supply); freezing fruit for a few days; cooking or pureeing fruit. Burial is not recommended at depths of less than 18 inches as medfly can survive a burial . The two main control methods recommended are foliage baiting and cover spraying. The female medfly requires a source of protein for the maturation of her eggs which she sources from fruit juices, bacteria etc from nature. The foliage bait combines a source of protein with an insecticide and is attractive for both the male as well as the female medfly. The bait is usually applied in the morning hours and applies as a spot application aimed at the middle of the trees. Cover spraying controls all life stages through contact and penetrative action. Spraying is carried out when fruits are half or two thirds in size. Depending on the level of infestation the two methods can be used together.
Physical: Trapping is not recommended as a control option but is useful for detection. The three types of traps used are those used to trap the male medfly which consists of a parapheromone plus insecticide, a trap for the female medfly using a lure and a wet trap used for both the male and the female medfly which consists of a food source ( a sugar or protein) plus an insecticide. It is good to remember that other insects can also be caught in these traps.
Biological: A technique called the sterile insect technique (SIT) is used to contain and exclude populations of medfly. The goal of SIT is to release sterile males to mate with any introduced wild females, resulting in the production of infertile eggs. In California, the SIT program is changing from the release of both male and female sterile flies (bisexual strains) to the use of sterile flies from “male-only” strains (Jang et al. 2003).
Please follow this link for detailed information on the management of the Ceratitis capitata.