In its native range, A. glutinosa is valuable for wildlife. It can contribute to biodiversity by providing habitats for a specific flora and fauna both on the tree itself and in the flooded root system (Dussart, 1999). In addition, both the leaves and the cones are a food source for animals. Seed-eating birds rely on the tree over the winter, as the cones open gradually over winter, releasing seed (Funk 2005). A. glutinosa also provides food for deer, rabbits and hares is recommended as shelter for pheasants (Alaska Natural Heritage Program 2005; Funk 2005).
Principal source:
Compiler: IUCN SSC Invasive Species Specialist Group (ISSG) with support from the Auckland Regional Council (ARC)
Review:
Publication date: 2010-08-27
Recommended citation: Global Invasive Species Database (2024) Species profile: Alnus glutinosa. Downloaded from http://iucngisd.org/gisd/species.php?lang=en&sc=1669 on 30-11-2024.
A. glutinosa can alter soil nutrient status. A symbiosis exists between A. glutinosa and Frankia sp. (Frankia is a genus of nitrogen fixing filamentous bacteria that live in symbiosis with actinorhizal plants and form root nodules, similar to Rhizobia); allowing A. glutinosa to fix atmospheric nitrogen (Bond et al. 1954). The ability to provide its own source of nitrogen enables A. glutinosa to grow on a wide range of soils and increases its invasiveness. Nodulation can occur is most of these soil conditions, but occurs best at pH 5.5 – 7.2 (Griffiths & McCormick 1984). This nitrification process increases the nitrogen status of the soil, which is also contributed to by leaf fall and decomposition (Claessens et al. 2010). The availability of phosphorous in the soil is also increased (Giardina et al. 1995).
A. glutinosa readily hybridises with other alder species, and known hybrids include A. glutinosa x A. rubra, A. cordata x A. glutinosa and A. glutinosa x A. orientalis (Funk 2005).
While several diseases and pests associated A. glutinosa exist, one of the most notable is the fungus Phytophthora alni, which has been spreading through alder populations in Europe since the 1990's (Claessens et al. 2010; Funk 2005). Trees present on river banks and near water are the most susceptible, as the presence of free water is necessary fot the development and transport of P. alni (Chandelier et al., 2006; Gibbs et al. 1999). Symptoms of the disease include dead roots, dead bark, small yellow-ish leaves and tar-coloured spots on trunk bases, and over the following years, branches die and death of the tree can occur (Claessens et al. 2010).